8 research outputs found

    Employing Emerging Technologies to Develop and Evaluate In-Vehicle Intelligent Systems for Driver Support: Infotainment AR HUD Case Study

    Get PDF
    The plurality of current infotainment devices within the in-vehicle space produces an unprecedented volume of incoming data that overwhelm the typical driver, leading to higher collision probability. This work presents an investigation to an alternative option which aims to manage the incoming information while offering an uncluttered and timely manner of presenting and interacting with the incoming data safely. The latter is achieved through the use of an augmented reality (AR) head-up display (HUD) system, which projects the information within the driver’s field of view. An uncluttered gesture recognition interface provides the interaction with the AR visuals. For the assessment of the system’s effectiveness, we developed a full-scale virtual reality driving simulator which immerses the drivers in challenging, collision-prone, scenarios. The scenarios unfold within a digital twin model of the surrounding motorways of the city of Glasgow. The proposed system was evaluated in contrast to a typical head-down display (HDD) interface system by 30 users, showing promising results that are discussed in detail

    Employing Emerging Technologies to Develop and Evaluate In-Vehicle Intelligent Systems for Driver Support: Infotainment AR HUD Case Study

    Get PDF
    The plurality of current infotainment devices within the in-vehicle space produces an unprecedented volume of incoming data that overwhelm the typical driver, leading to higher collision probability. This work presents an investigation to an alternative option which aims to manage the incoming information while offering an uncluttered and timely manner of presenting and interacting with the incoming data safely. The latter is achieved through the use of an augmented reality (AR) head-up display (HUD) system, which projects the information within the driver’s field of view. An uncluttered gesture recognition interface provides the interaction with the AR visuals. For the assessment of the system’s effectiveness, we developed a full-scale virtual reality driving simulator which immerses the drivers in challenging, collision-prone, scenarios. The scenarios unfold within a digital twin model of the surrounding motorways of the city of Glasgow. The proposed system was evaluated in contrast to a typical head-down display (HDD) interface system by 30 users, showing promising results that are discussed in detail
    corecore